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Abstract Combining quantum-mechanical (QM) calcula-
tions with quantum theory of atoms in molecules (QTAIM)
and using the methodology of sweeps of the energetic,
electron-topological, geometric and polar parameters, which
describe the course of the tautomerization along the intrinsic
reaction coordinate (IRC), we showed for the first time that the
biologically important A&A* base pair (Cs symmetry) formed
by the amino and imino tautomers of adenine (A) tautomerizes
via asynchronous concerted double proton transfer (DPT)
through a transition state (TS), which is the A+

&A− zwitterion
with the separated charge, with Cs symmetry. The nine key
points, which can be considered as electron-topological “fin-
gerprints” of the asynchronous concerted A&A*↔A*&A
tautomerization process via the DPT, were detected and
completely investigated along the IRC of the A&A*↔A*&A
tautomerization. Based on the sweeps of the H-bond energies,
it was found that intermolecular antiparallel N6Н⋯N6 (7.01

kcal mol−1) and N1H⋯N1 (6.88 kcal mol−1) H-bonds are
significantly cooperative and mutually reinforce each other.
It was shown for the first time that the A&A*↔A*&A
tautomerization is assisted by the third C2H⋯HC2
dihydrogen bond (DHB), which, in contrast to the two others
N6H⋯N6 and N1H⋯N1 H-bonds, exists within the IRC
range from −2.92 to 2.92 Å. The DHB cooperatively
strengthens, reaching its maximum energy 0.42 kcal mol−1

at IRC=−0.52 Å and minimum energy 0.25 kcal mol−1 at IRC
=−2.92 Å, and is accompanied by strengthening of the two
other aforementioned classical H-bonds. We established that
the C2H⋯HC2 DHB completely satisfies the electron-
topological criteria for H-bonding, in particular Bader’s and
all eight “two-molecule” Koch and Popelier’s criteria. The
positive value of the Grunenberg’s compliance constant
(5.203 Å/mdyn) at the TSA&A*↔A*&A proves that the
C2H⋯HC2 DHB is a stabilizing interaction. NBO analysis
predicts transfer of charge from σ(C2–H) bonding orbital to
σ*(H–C2) anti-bonding orbital; at this point, the stabilization
energy E(2) is equal to 0.19 kcal mol−1 at the TSA&A*↔A*&A.

Keywords Amino and imino tautomers of adenine . Sweeps
of the energetic, electron-topological, geometric and polar
parameters along the IRC . The double proton transfer .

Cooperativity of the H-bonds . CH&&&HC dihydrogen bond .
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Introduction

Adenine (A) occupies a prominent place among the canon-
ical DNA bases [1]. It is believed that this nucleobase
appeared first in the processes of abiogenic synthesis in
the anoxic proto-atmosphere of the Earth [2, 3]. This obser-
vation is associated with the fact that, among all canonical
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DNA bases and among all possible structural isomers of
aminopurines with one and the same С5N5H5 gross formula,
only A is an energetically favorable isomer [4].

The complete family of molecular-zwitterionic prototropic
tautomers of A comprises nine structures [5]. The most con-
vincing biological role among these tautomers belongs to the
A* imino form: it exactly mimics the guanine base and forms
complementary bonds with cytosine base causing point muta-
tions during DNA biosynthesis in the cell [6–8]. Experimental
data on rare tautomers of the A base in the electronic ground
state were absent in the literature until recently: information on
them has been acquired only in a theoretical way [5, 7–12].

Recently, the long A&A* Watson-Crick base pair (Fig. 1),
which is formed by the amino and imino tautomers of the A
base joined by two antiparallel N1H⋯N1 and N6H⋯N6
hydrogen bonds (H-bonds), has been firmly established
using X-ray analysis of the crystal structures of Thermus
thermophilus 30 S [13–15] and Haloarcula marismortui 50
S ribosomal subunits [15, 16]. The authors of the work [15]
considered the A&A* base pair as a static structure, in which
imino and amino protons are localized in one of the two
possible local minima: A&A* or A*&A.

The A base is also prone to deaminate spontaneously to
hypoxanthine, generating, if left unrepaired, deleterious geno-
mic mutation, namely A·T→G·C transitions, during DNA
biosynthesis and resulting in genetic alterations potentially
leading to cancer development or cell death [17–21]. In our
recent works [22, 23] the molecular mechanisms of the muta-
tion pressure exerted by hypoxanthine on DNA were thor-
oughly analyzed.

This work is aimed at understanding the structurally
energetic and dynamic characteristics of the long A&A*
Watson-Crick base pair, as well as its intrinsic properties.
Using the sweeps (the result of the scanning of the changes
of the certain physico-chemical characteristic along the
IRC) of the energetic, electron-topological, geometric and
polar parameters of the A&A*↔A*&A tautomerization via
double proton transfer (DPT) along the intrinsic reaction
coordinate (IRC), we established that it is a concerted (i.e.,
this reaction involves no stable intermediates) and asynchro-
nous (i.e., protons move with a time gap) process. It should
be noted that the tautomerization of the A&A* base pair (Cs)
into the A*&A base pair (Cs) via the transition state (TS) (Cs),

which is the A+
&A− zwitterion with the separated charge,

stabilized by the N6+H⋯N6− and N1+H⋯N1− H-bonds and
the C2+H⋯HC2− dihydrogen bond (DHB), is none other than
the tautomeric transition of the A&A* base pair into itself.

Computational methods

All calculations were carried out with the Gaussian’09 suite of
programs [24]. Geometries and harmonic vibrational frequen-
cies of the A&A* and A*&A long base pairs and the TS of their
tautomerization via the DPTwere obtained using density func-
tional theory (DFT) [25] with the B3LYP hybrid functional
[26], which includes Becke’s three-parameter exchange func-
tional (B3) [27] combined with Lee, Yang and Parr’s (LYP)
correlation functional [28] in connection with Pople’s 6-311++
G(d,p) basis set in vacuum. A scaling factor of 0.9668 [7, 22,
23, 29–36] was used in the present work at the B3LYP
quantum-mechanical (QM) level of theory to correct the har-
monic frequencies of all the studied structures. We performed
single point energy calculations at the correlated MP2 level of
theory [37] with the 6-311++G(2df,pd) Pople’s [38–40] and cc-
pVTZ/cc-pVQZ Dunning’s cc-type [41, 42] basis sets for
B3LYP/6-311++G(d,p) geometries to consider electronic cor-
relation effects as accurately as possible. MP2/6-311++
G(2df,pd)//B3LYP/6-311++G(d,p), MP2/cc-pVTZ//B3LYP/6-
311++G(d,p) and MP2/cc-pVQZ//B3LYP/6-311++G(d,p)
levels of theory were applied successfully to similar systems,
and have been verified to give accurate normal mode frequen-
cies, barrier heights, characteristics of intra- and intermolecular
H-bonds and geometries [3, 7, 22, 23, 29–36, 43–56].
Moreover, excellent agreement between computational and
experimental NMR, UV and IR spectroscopic data [5, 35, 48,
50, 51] evidences that the levels of theory applied for the single-
point energy calculations [MP2/6-311++G(2df,pd), MP2/cc-
pVTZ and MP2/cc-pVQZ], as well as the method employed
for the geometry optimisation [B3LYP/6-311++G(d,p)] are
reliable.

The correspondence of the stationary points to local minima
or TS on the potential energy landscape has been checked by
the absence or the presence, respectively, of one and only one
imaginary frequency corresponding to the normal mode that
identifies the reaction coordinate. TS was located by means of
the synchronous transit-guided quasi-Newton (STQN) method
[57, 58].

Following location of the stationary points and TS, the
reaction pathway was established by following the IRC in the
forward and reverse directions from the TS using the Hessian-
based predictor-corrector (HPC) integration algorithm [59–61]
with tight convergence criteria. These calculations eventually
ensure that the proper reaction pathway, connecting the
expected reactants and products on each side of the TS, has
been found. We investigated the evolution of the energetic,

Fig. 1 Geometrical structure of the A&A* base pair (Cs). The numer-
ation of atoms is generally accepted [78]. The intermolecular H-bonds
are marked by dashed lines
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geometric, polar and electron-topological characteristics of the
H-bonds and base pairs along the reaction pathway,
establishing them at each point of the IRC.

The electronic interaction energies, Eint, were computed at
the MP2/6-311++G(2df,pd) level of theory for the geometries
optimised at the DFT B3LYP/6-311++G(d,p) level of theory as
the difference between the total energy of the base pair and the
energies of the isolated monomers. In each case the interaction
energy was corrected for the basis set superposition error
(BSSE) [62, 63] through the counterpoise procedure [64, 65].

The Gibbs free energy G values for all structures were
obtained at room temperature (T=298.15 K) in the follow-
ing way:

G ¼ Eel þ Ecorr; ð1Þ

where Eel is the electronic energy, and Ecorr is the thermal
correction.

The lifetime τ of the mispair can be estimated as 1/kf,r.
The time τ99.9 % necessary to reach 99.9 % of the equilib-
rium concentration of the A*&A reactant and the A&A* prod-
uct of reaction in the system of reversible first-order forward
(kf) and reverse (kr) reactions was estimated by the formula
[66]:

τ99:9% ¼ ln103

k f þ kr
: ð2Þ

To estimate the values of the forward kf and reverse kr
rate constants for the A&A*↔A*&A tautomerization reaction:

k f ;r ¼ Γ ⋅
kBT

h
e−

ΔΔG f ;r
RT ð3Þ

we applied the standard TS theory [66], in which quantum
tunneling effects are accounted by the Wigner’s tunneling
correction [67], that is adequate for the DPT reactions [3, 7,
22, 29–33, 36, 43]:

Γ ¼ 1þ 1

24

hνi
kBT

� �2

; ð4Þ

where kB is the Boltzmann’s constant, T=298.15 K is the
temperature, h is Planck’s constant, ΔΔGf,r is Gibbs free
energy of activation for the DPT reaction (T=298.15 K), R
is the universal gas constant, and νi is the magnitude of the
imaginary frequency associated with the vibrational mode at
the TS that connects reactants and products.

Bader’s quantum theory “atoms in molecules” (QTAIM)
was applied to analyze electron density [68]. The topology
of the electron density was examined using program pack-
age AIMAll [69] with all the default options. Wave func-
tions were obtained at the level of theory used for geometry
optimization. The presence of a bond critical point [68],
namely the so-called (3,−1) bond critical point (BCP) and

a bond path between hydrogen donor and acceptor, as well
as the positive value of the Laplacian at this BCP (Δρ≥0),
were considered as three criteria for H-bond formation [68,
70]. Moreover, another five Koch and Popelier’s criteria
[70] dealing with changes in atomic properties (positive
charge increase Δq, dipolar polarization decrease ΔM, re-
duction in atomic volume ΔV, energetic destabilization ΔE
and mutual penetration of donor Hd and acceptor Ha hydro-
gen atoms [Δr(Hd)+Δr(Ha)] upon the formation of the
hydrogen bond, were applied to test the C2+H⋯HC2− con-
tact at the TSA&A*↔A*&A as DHB.

The energies of the conventional intermolecular H-bonds
in the A&A* and A*&A base pairs and TSA&A*↔A*&A were
evaluated by the empirical Iogansen’s formula [71]:

EHB ¼ 0:33⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δν−40

p
; ð5Þ

where Δν is the magnitude of the redshift (relative to the free
molecule) of the stretching mode of the H-bonded groups
involved in the H-bonding. The partial deuteration, namely the
semi-deuteration of the amino group, was applied to eliminate
the effect of vibrational resonances [3, 7, 22, 29–36, 43, 48–52].

The energies of all intermolecular H-bonds under the
investigation of the sweeps of the H-bond energies were
evaluated by the empirical Espinosa-Molins-Lecomte
(EML) formula [72, 73] based on the electron density dis-
tribution at the (3,−1) BCPs of the H-bonds:

EHB ¼ 0:5⋅V rð Þ; ð6Þ
where V(r) is the value of a local potential energy at the
(3,−1) BCPs.

Moreover, the relative strength of the C2H⋯HC2 DHB
was estimated by means of Grunenberg’s compliance con-
stants formalism [74–76]. In contrast to force constants, the
numerical values of compliance constants do not depend on
the coordinate system. The physical meaning of compliance
constants is deduced from their definition as partial second
derivative of the potential energy due to an external force:

Cij ¼ ∂2E
�
∂ f i∂ f j

: ð7Þ

In other words, compliance constants measure the dis-
placement of an internal coordinate resulting from a unit
force acting on it. As follows from this definition, a lower
numerical value of compliance constant represents a stron-
ger bond. The compliance constants were calculated using
Compliance 3.0.2 program [74–76].

To study the charge transfer property in the interacting
orbitals of the C2+H⋯HC2- DHB at the TSA&A*↔A*&A, we
resorted to natural bond orbital (NBO) analysis [77], which
interprets the electronic wave function in terms of a set of
occupied Lewis and a set of unoccupied non-Lewis localized
orbitals. A second-order Fock matrix analysis was carried out

J Mol Model (2013) 19:4223–4237 4225



to evaluate interactions between donor (i) and acceptor (j)
bonds. The result of such interaction is a migration of the
electron density from the idealized Lewis structure into an
empty non-Lewis orbital σ*. For each donor (i) and acceptor
(j) bond, the stabilization energy is:

E 2ð Þ ¼ ΔEij ¼ qi
F i; jð Þ2
ε j−εi

; ð8Þ

where qi is the donor orbital occupancy, εj and εi are diagonal
elements and F(i,j) is the off diagonal element of NBO Fock
matrix.

The atomic numbering scheme for the A nucleobase is
conventional [78]. All distances including IRC are presented
in the text in Å (1 Bohr=0.52918 Å).

Results and discussion

The obtained results are presented in Tables 1, 2, 3, and 4
and Figs. 2, 3, 4, 5, 6, 7, 8, and 9 and S1. Their analysis
allows us to make the following conclusions.

We have shown for the first time that the A&A*↔A*&A
tautomerization via the DPT is a concerted (i.e., the reaction
involves no stable intermediates) and asynchronous process
(i.e., the A&A* base pair sequentially converts to the A*&A
base pair by the migration of the proton localized at the N1
nitrogen atom of the A* imino tautomer along the
N1H⋯N1 H-bond to the N1 nitrogen atom of the A base
and then through the TS, which is the A+

&A- zwitterion with
the separated charge, the proton localized at the N6 nitrogen
atom of the A+ protonated base transitions to the N6 nitro-
gen atom of the A- deprotonated base).

The equivalent from a symmetrical point of view A&A*
and A*&A base pairs, which are biologically important and
defined in the literature as long Watson-Crick base pairs
[15], are planar structures with Cs symmetry, despite the
fact that A, in common with other DNA bases, is a flexible
molecule [56, 79, 80]. The A&A* and A*&A base pairs are
stabilized by two antiparallel and energetically almost
equivalent upper N6H⋯N6 (7.06 kcal mol−1), exposed in
the major groove of the double-stranded DNA, and the
middle N1⋯HN1 (6.88 kcal mol−1) H-bonds (Tables 1, 2).
The TSA&A*↔A*&Awith imaginary frequency νi=497.5i cm

−1

also has Cs symmetry. Notably, the TS of the A&A*↔A*&A
tautomerization is the ion pair A+

&A− stabilized by the two
parallel and quite strong N6+H⋯N6− (13.92 kcal mol−1)
and N1+H⋯N1− (13.50 kcal mol−1) conventional H-bonds
and one weak C2+H⋯HC2− (0.42 kcal mol−1) DHB
(Tables 1, 2).

It is interesting to note that the total energy ΣEHB of the
N6H⋯N6 and N1⋯HN1 H-bonds in the A&A* or A*&A
base pairs is notably less (ΣEHB/|ΔEint|=77.6 %), than the

electronic energy of the interaction of the A and A* bases in
the pair (ΔEint=−17.89 kcal mol−1). The energy relationship
ΣEHB/|ΔEint| cannot be considered as the physico-chemical
characteristic exceptionally of the A&A* and A*&A base pairs
and was used for the characterization of the other H-
bonded base pairs [3, 7, 22, 43]. The A&A* and A*&A
base pairs are thermodynamically stable structures with
ΔGint=−4.32 kcal mol−1 at room temperature. It was
established that the A&A* and A*&A base pairs are dynamically
stable structures [43, 56, 81], as their zero-point energy
(1,560.2 cm−1) of the corresponding vibrational mode, which
frequency becomes imaginary at the TS of the A&A*↔A*&A
tautomerization, is less than the value of the reverse barrier
ΔΔETS=10.33 kcal mol−1 or 3,612.8 cm−1 obtained at the
MP2/cc-pVQZ//B3LYP/6-311++G(d,p) level of QM theory
(Table 3).

Establishing the several types of properties, namely, the
electronic energy, the first derivative of the electronic energy
with respect to the IRC, the dipole moment of the A&A* base
pair, the intermolecular H-bond distances, the electron density,
the Laplacian of the electron density, the energy at the BCPs of
the intrapair H-bonds and the distance between the glycosidic
protons at each step along the IRC of the A&A*↔A*&A
tautomerization, we obtained the sweeps of these characteris-
tics presented in Figs. 2, 3, 4, 5, 6, 7, 8, and 9 and S1.

We revealed nine key points for A&A*↔A*&A
tautomerization (Fig. 2) similar to those obtained previously
in our recent studies [3, 23]; three of these key points
represent stationary structures—the TSA&A*↔A*&A (key point
5), the initial state (the A&A* reactant; key point 1) and the
final state, i.e., the A*&A product (key point 9), which is
equivalent to the reactant. The other six key points are
predefined by the structural and electronic rearrangements of
the A&A* base pair along the IRC.

Key point 1. The starting structure along the IRC path-
way is the A&A* base pair with Watson-Crick geometry.
It is stabilized by the N6H⋯N6 and N1⋯HN1 coop-
erative H-bonds (Tables 1, 2; Figs. 2, 6c).
Key point 2. The structure of the base pair, for which
the H–N1 chemical bond of the A* base is significantly
weakened and the N1⋯H H-bond actually becomes the
N1–H covalent bond (ΔρN1⋯H=0) (Figs. 2, 6b). The
maximum value of the energy of the N1⋯H H-bond is
reached at this key point (Fig. 6c). Interestingly, one of
the two extrema of the first derivative of the electron
energy with respect to the IRC dE/dIRC (well known in
the literature as reaction force [82–87]) is reached ex-
actly at this key point (Fig. 3a, b). Moreover, precisely
at key point 2, the A and A* bases, acting in this case as
the reactants of the DPT reaction, lose their chemical
individuality since the N1⋯H H-bond begins to trans-
form into the N1–H covalent bond.

4226 J Mol Model (2013) 19:4223–4237



Table 1 Electron-topological, structural, vibrational and energetic characteristics of the intermolecular H-bonds in the A&A*, A*&A and
TSA&A*↔A*&A obtained at the B3LYP/6-311++G(d,p) level of theory in vacuum. IRC Intrinsic reaction coordinate, TS transition state

Complex AH⋯B Н-bond ρa Δρb 100∙εc dA⋯B
d dH⋯B

e ΔdAH
f ∠AH⋯Bg Δνh EHB

i

A∙A* (IRC=−3.05 Å) N6H⋯N6 0.035 0.091 7.19 2.918 1.885 0.028 176.3 491.5 7.01

N1⋯HN1 0.034 0.087 6.76 2.943 1.904 0.030 179.0 474.6 6.88

TSA∙A*↔A*∙A (IRC=0.00 Å) N6+H⋯N6− 0.099 0.034 5.16 2.614 1.464 0.142 176.0 1,820.2 13.92

N1+H⋯N1− 0.098 0.029 4.70 2.637 1.479 0.144 179.5 1713.1 13.50

C2+H⋯HC2− 0.003 0.009 60.46 3.467 2.702 0.001 127.2 22.6 0.42*

A*∙A (IRC=3.05 Å) N6⋯HN6 0.035 0.091 7.19 2.918 1.885 0.028 176.3 491.5 7.01

N1H⋯N1 0.034 0.087 6.76 2.943 1.904 0.030 179.0 474.6 6.88

a Electron density at the bond critical point (BCP), a.u.
b Laplacian of the electron density at the BCP, a.u.
c Ellipticity at the BCP
dDistance between A (H-bond donor) and B (H-bond acceptor) atoms, Å
e Distance between H and B atoms, Å
f Elongation of the H-bond donating group AH upon H-bonding, Å
gH-bond angle, degree
h Redshift of the stretching vibrational mode of the AH H-bonded group, cm−1

i H-bond energy, estimated by Iogansen’s [70] or Espinose-Molins-Lecomte (EML) formulae (marked with an asterisk) [71, 72], kcal mol−1

Table 2 Electron-topological, structural and energetic characteristics of the intermolecular H-bonds revealed in the structures of the nine key points
obtained at the B3LYP/6-311++G(d,p) level of theory in vacuum. For footnote definitions, see Table 1

Complex AH⋯B Н-bond ρ Δρ 100&ε dA⋯B dH⋯B ∠AH⋯B EHB

Key point 1 (A∙A*) (IRC=−3.05 Å) N6H⋯N6 0.035 0.091 7.19 2.918 1.885 176.3 7.01

N1⋯HN1 0.034 0.087 6.76 2.943 1.904 179.0 6.88

Key point 2 (ΔρN1⋯H=0, IRC=−0.31 Å) N6H⋯N6 0.078 0.093 5.58 2.635 1.553 175.3 25.16*

N1⋯HN1 0.112 0.000 4.18 2.621 1.418 180.0 37.45*

C2H⋯HC2 0.003 0.009 48.67 3.459 2.700 126.6 0.42*

Key point 3 (ρN1H=ρHN1, IRC=−0.19 Å) N6H⋯N6 0.083 0.080 5.50 2.631 1.532 175.4 26.68*

N1-H-N1 0.148 −0.196 5.10 2.622 1.311 179.7 -

C2H⋯HC2 0.003 0.009 53.06 3.461 2.700 126.8 0.42*

Key point 4 (ΔρH⋯N1=0, IRC=−0.05 Å) N6H⋯N6 0.092 0.054 5.31 2.621 1.131 175.7 29.75*

N1H⋯N1 0.107 0.000 4.49 2.631 1.187 179.5 34.53*

C2H⋯HC2 0.003 0.009 58.77 3.465 2.701 127.1 0.42*

Key point 5 (TSA∙A*↔A*∙A) (IRC=0.00 Å) N6+H⋯N6- 0.099 0.034 5.16 2.614 1.464 176.0 13.92

N1+H⋯N1- 0.098 0.029 4.70 2.637 1.479 179.5 13.50

C2+H⋯HC2- 0.003 0.009 60.46 3.467 2.702 127.2 0.42*

Key point 6 (ΔρH⋯N6=0, IRC=0.05 Å) N6H⋯N6 0.109 0.000 4.94 2.606 1.426 176.2 35.90*

N1H⋯N1 0.092 0.047 4.86 2.642 1.503 179.5 29.27*

C2H⋯HC2 0.003 0.009 61.21 3.469 2.703 127.3 0.42*

Key point 7 (ρN6H=ρHN6, IRC=0.19 Å) N6-H-N6 0.150 −0.200 4.01 2.596 1.298 176.6 –

N1H⋯N1 0.083 0.073 5.08 2.649 1.540 179.5 26.54*

C2H⋯HC2 0.002 0.009 59.91 3.470 2.705 127.3 0.41*

Key point 8 (ΔρN6⋯H=0, IRC=0.31 Å) N6⋯HN6 0.113 0.000 4.53 2.593 1.409 176.8 38.76*

N1H⋯N1 0.079 0.086 5.20 2.652 1.561 179.5 25.15*

C2H⋯HC2 0.002 0.009 57.92 3.471 2.705 127.3 0.41*

Key point 9 (A*∙A) (IRC=3.05 Å) N6⋯HN6 0.035 0.091 7.19 2.918 1.885 176.3 7.01

N1H⋯N1 0.034 0.087 6.76 2.943 1.904 179.0 6.88
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Key point 3. The structure is characterized by the equiv-
alent loosened N1–H and H–N1 covalent bonds.
Dependencies of the geometrical and electron-
topological characteristics at the BCPs of these equiva-
lent chemical bonds intersect exactly at this key point,
forming χ-like graphs for the loosened N1–H–N1 bridge
(ρN1-H=ρH-N1=0.148 a.u.; ΔρN1-H=ΔρH-N1=−0.196
a.u.; dN1-H=dH-N1=1.311 Å; dN1⋯N1=2.622 Å; ∠N1–
H–N1=179.7°) (Table 2, Figs. 2; 6a, b; 7).
Key point 4. At this structure situated quite close to the
TSA&A*↔A*&A the H–N1 covalent bond becomes the
H⋯N1 H-bond (Fig. 2). A characteristic feature of this
structure is a zero value of the Δρ at the BCP of the
H⋯N1 H-bond (Fig. 6b). The maximum value of the
energy of the H⋯N1 H-bond is attained at this key
point (Fig. 6c).
Key point 5. The TSA&A*↔A*&A of the tautomerization
via the DPT, which itself represents an ion pair A+

&A−,

is stabilized by the N6+H⋯N6− and N1+H⋯N1− ca-
nonical H-bonds and the C2+H⋯HC2− DHB (Tables 1,
2; Figs. 2, 6c).
Key point 6. The structure of the base pair, for which
the N6–H chemical bond of the A+ base is significantly
weakened and the H⋯N6 H-bond actually becomes the
H–N6 covalent bond (ΔρH&&&N6=0) (Figs. 2, 6b). The
maximum value of the energy of the H⋯N6 H-bond is
reached at this key point (Fig. 6c).
Key point 7. This structure possesses the equivalent loos-
ened N6-H and H-N6 covalent bonds. Dependencies of
the geometrical and electron-topological characteristics at
the BCPs of these equivalent chemical bonds intersect
exactly at this key point, forming χ-like graphs for the
loosened N6-H-N6 bridge (ρN6-H=ρH-N6=0.150 a.u.;
ΔρN6-H=ΔρH-N6=−0.200 a.u.; dN6-H=dH-N6=1.298 Å;
dN6⋯N6=2.596 Å; ∠N6-H-N6=176.6°) (Table 2, Figs. 2;
6a, b; ).

Table 3 Energetic and kinetic characteristics of the A&A*↔A*&A tautomerization via double proton transfer (DPT) in vacuo obtained at the
different levels of quantum-mechanical (QM) theory

Level of QM theory ΔΔGTS
a ΔΔETS

b νc EZPE
d τe τ99.9 %

f

kcal mol−1 cm−1

MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) 6.51 9.83 3,438.9 3,120.4 1,560.2 7.87·10−9 2.72·10−8

MP2/cc-pVTZ//B3LYP/6-311++G(d,p) 6.99 10.31 3,604.9 3,120.4 1,560.2 1.75·10−8 6.06·10−8

MP2/cc-pVQZ//B3LYP/6-311++G(d,p) 7.01 10.33 3,612.8 3,120.4 1,560.2 1.82·10−8 6.29·10−8

a Gibbs free energy of activation for the forward and reverse reactions of tautomerization (T=298.15 K), kcal mol−1

b Activation electronic energy for the forward and reverse reactions of tautomerization
c Frequency of the vibrational mode of the tautomerized complex which becomes imaginary in the TS of tautomerization, obtained at the B3LYP/6-
311++G(d,p) level of geometry optimization (cm−1 )
d Zero-point vibrational energy associated with this normal mode (cm−1 )
e Lifetime of the A&A*/A*&A base pair (s)
f Time necessary to reach 99.9 % of the equilibrium concentration of the reagent A&A* and the product A*&A of the A&A*↔A*&A tautomerization
reaction via the DPT (s)

Table 4 Change of atomic properties of the donor Hd and acceptor Ha

hydrogen atoms involved in the intermolecular C2+H⋯HC2−

dihydrogen bond (DHB) in the TSA&A*→A*&A obtained at the B3LYP/
6-311++G(d,p) level of theory in vacuum. Δr(Hd)+Δr(Ha) − mutual

penetration, i.e., the sum of the variations of atomic radii of donor Hd

and acceptor Ha hydrogen atoms upon the formation of the
C2+H⋯HC2− DHB. All changes of values are indicated with respect
to free monomers (bases)

q(Hd)
a Δq M(Hd)

b −ΔM V(Hd)
c −ΔV −E(Hd)

d ΔE r(Hd)
e r(Ha)

f Δr(Hd)
g Δr(Ha)

h

0.928 0.021 0.129 0.007 47.1 0.3 0.599 0.009 2.51 2.59 0.02 0.03

a Atomic charge (a.u.)
b Dipolar polarization (a.u.)
c Atomic volume (a.u.)
d Energy of the atom (a.u.)
e Radius of the donor Hd hydrogen atom upon the formation of the C2+H⋯HC2− DHB (a.u.)
f Radius of the acceptor Ha hydrogen atom upon the formation of the C2+H⋯HC2− DHB (a.u.)
g Variation of atomic radius of donor Hd hydrogen atom upon the formation of the C2+H⋯HC2− DHB (a.u.)
h Variation of atomic radius of acceptor Ha hydrogen atom upon the formation of the C2+ H⋯HC2− DHB (a.u.)
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Key point 8. At this structure, which is situated quite close
to the final A*&A base pair and in which the mispair
containing amino and imino tautomers of the A base
begins to form, the N6–H covalent bond becomes the
N6⋯H H-bond (Fig. 2). A characteristic feature of this
structure is a zero value of the Δρ at the BCP of the
H⋯N6 H-bond (Fig. 6b). The maximum value of the
energy of the N6⋯H H-bond is attained at this key point
(Fig. 6c). Interestingly, the second extremum of the first
derivative of the electron energy with respect to the IRC
dE/dIRC (well known in the literature as reaction force
constant [82–87]) is reached exactly at this key point
(Fig. 3a,b). It should be noted that, precisely at the key
point 8, the A and A* bases, acting in this case as the

products of the DPT reaction, reduce their chemical indi-
viduality, since the N6–H covalent bond begins to trans-
form into the N6⋯H H-bond.
Key point 9. The final structure is the tautomerized A*&A
base pair, stabilized by the N6⋯HN6 and N1H⋯N1
cooperative H-bonds (Tables 1, 2; Figs. 2, 6c).

These nine key points [3, 23] are used to define the
reactant, TS and product regions of the A&A*↔A*&A
tautomerization via the DPT (Figs. 2, 3b). The division of
the reaction pathway into the reaction, TS and product
region can be done quite naturally and unambiguously by
taking the reaction force minimum and the reaction force
maximum as the boundaries for these regions [82–87]. So,

Fig. 2 Geometric structures of the nine key points describing the
evolution of the A&A*↔A*&A tautomerization via the double proton
transfer (DPT) along the intrinsic reaction coordinate (IRC) obtained at
the B3LYP/6-311++G(d,p) level of theory in vacuo. The coordinates of

each key point are presented above it. The dotted lines indicate AH⋯B
H-bonds and C2H⋯HC2 dihydrogen bond (DHB), while continuous
lines show covalent bonds (lengths in Ångstroms). Atoms: light-blue
carbon, dark-blue nitrogen, grey hydrogen
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Fig. 3 Profiles of a the electronic energy E, and b the first derivative of the electronic energy with respect to the IRC dE/dIRC along the IRC of the
A&A*↔A*&A tautomerization via the DPT obtained at the B3LYP/6-311++G(d,p) level of theory in vacuo
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nucleotide bases do not lose their chemical individuality at the
reactant and product regions, which are located between the
key points 1–2 and 8–9, respectively, and acquire the mutual
deformation and orientation that eventually lead to the chem-
ical reaction at the TS region, namely to the DPT. It follows
quite logically from the obtained by us sweeps of theΔρ that
the reactant region starts at key point 1 and ends at key point 2.
The product region, where the rare tautomers of nucleotide
bases do not lose their chemical individuality and where the
relaxation to the final A* &A base pair takes place, begins at
key point 8 and ends at the final key point 9. Actually, the TS
region, where the DPToccurs, is located between key points 2
and 8. At the reactant region, the A&A* base pair rearranges in

order to run the DPT chemical reaction. We established that
the electronic energy necessary to bring the donor and accep-
tor atoms as close as possible to each other to activate the DPT
reaction, i.e., the energy difference between key points 2 and
1, is 7.74 kcal mol−1, representing 70.1 % of the TS energy.
An equivalent quantity of energy is released at the relaxation
of the base pair, corresponding to key point 8, under its
tautomerization into the reaction product: the A* &A base pair.
A characteristic feature of the A&A*↔A*&A tautomerization is
the rather narrow zone of the essentially DPT chemical reac-
tion, which lies within the IRC range from −0.31 to 0.31 Å
(Fig. 3b).

We established that the A&A* base pair “breathes” through-
out the tautomerization process, thereby maintaining its
Watson-Crick geometry (Figs. 7a,b; 9). The compression of
the starting A&A* or the final A*&A base pairs at the TS region,
especially at the TSA&A*↔A*&A, occurs due to the contraction of
the distances between the N6 (by 0.306 Å) and N1 nitrogen
atoms (by 0.292 Å) and the C2 carbon atoms (by 0.268 Å)
(Figs. 7a,b; 9). This phenomenon is also represented by the
changes of α1 and α2 glycosidic angles (by 1.3°) and R(H–H)
distance between the glycosidic protons (by 0.272 Å) (Fig. 9).
Moreover, the R(H–H) distance does not depend on IRC and
remains almost constant (12.03 Å) (Fig. 9) within the IRC
range from −0.72 to 0.72 Å. Changes in the R(H–H) distance
are accompanied by the distortion of the glycosidic angles α
that leads to their oscillations within the range 45.9–47.2°.
The ∠N1HN1 angle insignificantly changes (178.5–180.0°),
while the ∠N6НN6 angle varies strongly (173.7–177.1°)
along the IRC. Ellipticity of the classical intermolecular
N6H⋯N6 and N1H⋯N1 H-bonds non-monotonically varies
within the range from 0.031 to 0.072 along the IRC (Fig. S1).

µ
, D

IRC, Bohr

Fig. 4 Profile of the dipole moment μ along the IRC of the
A&A*↔A*&A tautomerization via the DPT obtained at the B3LYP/6-
311++G(d,p) level of theory in vacuo

Fig. 5 Change in magnitude and orientation of the dipole moment
vector at the А&А*↔А*&А (upper row) and А*&А↔А&А* (lower row)
tautomerizations through the DPT obtained at the B3LYP/6-

311++G(d,p) level of theory in vacuo. The structures corresponding
to the stationary points and their dipole moments are presented
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The strong dependence of both the absolute value and the
orientation of the dipole moment of the studied base pairs in the
DPT process on the IRC has been revealed (Figs. 4, 5). Thus,
we came to the conclusion that the investigated A&A* base pair
cannot be considered as a static structure, since it performs
dipole-active movements with large amplitude through the
DPT, transforming to the A*&A symmetric state and vice versa.

The upper N6H⋯N6 and the middle N1⋯HN1 H-bonds
in the A&A* base pair exist within the 1–6 and 1–2 struc-
tures, respectively, becoming coherently stronger during the
tautomerization process, while the upper N6⋯HN6 and the
middle N1H⋯N1 H-bonds in the A*&A base pair exist
within the 8–9 and 4–9 structures, respectively, becoming
coherently weaker during the tautomerization process in
vacuum (Fig. 6c). It should be noted that the graphs show
the energy of only those H-bonds corresponding to the value
Δρ≥0 (Fig. 6b).

Analysis of the dependencies of the H-bond energies on
the IRC listed in Fig. 6c allows us to make a definite
conclusion that they are significantly cooperative [3, 22,
91] (dEN1⋯HN1/dEN6H⋯N6=11.90/1.00) and mutually rein-
force each other.

We established that the A&A*↔A*&A tautomerization is
assisted by the third C2H⋯HC2 DHB [48–53, 88, 89], which,
in contrast to the two others H-bonds, exists within the IRC
range from −2.92 to 2.92 Å (Fig. 8). The C2H⋯HC2 DHB
cooperatively strengthens, reaching its maximum energy 0.42
kcal mol−1 at IRC=−0.52 Å and minimum energy 0.25
kcal mol−1 at IRC=−2.92 Å, and is accompanied by strength-
ening of the two aforementioned classical H-bonds. To distin-
guish between H-bond donating (donor) and accepting
(acceptor) C2H groups, we compared NBO charges on the
hydrogen atoms of these groups [48–53, 92, 93]. It was found
that the hydrogen atom of the C2H group in the A+ base bears a
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Fig. 6 Profiles of a the electron density ρ, b the Laplacian of the
electron density Δρ, and c the energy of the H-bond EHB, estimated by
the EML formula [72, 73], at the BCPs of the covalent and hydrogen

bonds along the IRC of the A&A*↔A*&A tautomerization via the DPT
obtained at the B3LYP/6-311++G(d,p) level of theory in vacuo
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greater positive charge (0.188 e) than the corresponding hydro-
gen in the A− base (0.160 e) at the TSA&A*↔A*&A, and thus can
be considered as the H-bonding donor, while the hydrogen
atom of the C2H group in the A− base serves as the acceptor
(Fig. 8f).

The C2+H(A+)⋯HC2−(A−) interaction at the TSA&A*→A*&A

does not meet the geometric requirements for the H-bonding
determined by Bondi [94], since the distance between the
donor and acceptor groups exceeds the double Bondi’s van
der Waals radius of the hydrogen atom: dHH(2.70 Å)>
2rH

vdW(2.40 Å). However, a van der Waals cutoff is not the
physical limit of the long-range electrostatic H-bond interac-
tion [95] and can act beyond this distance [96]. Moreover, the
hydrogen bond radii for CH group have been recently revised
in the literature and established to be 1.10±0.20 Å; it appears
that a CH group could have a radius larger than 1.2 Å when
involved in H-bonding [97].

The C2+H⋯HC2− DHB angle for the TSA&A*↔A*&A was
established to be 127.2° (Tables 1, 2).

An extremely interesting situation was observed for the
sweeps of the charges of the hydrogen atoms localized at the
C2 carbon atoms along the IRC of the A&A*↔A*&A
tautomerization via the DPT (Fig. 8f). The hydrogen atom
localized at the C2 carbon atom in the amino form of A serves
as the acceptor of the C2H⋯HC2 DHB, and the hydrogen
atom localized at the C2 carbon atom in the imino form of A
serves as the donor of the C2H⋯HC2 DHB within the IRC
range from −2.92 to −0.31 Å, while the hydrogen atom
localized at the C2 carbon atom in the amino form of A acts
as the donor of the C2H⋯HC2 DHB and the hydrogen atom
localized at the C2 carbon atom in the imino form of A serves
as the acceptor of the C2H⋯HC2 DHB within the IRC range

from −0.31 to 2.92 Å. Thus, the donor and acceptor hydrogen
atoms interchange at key point 2 (IRC=−0.31 Å). The largest
difference between the NBO charges of the donor and accep-
tor hydrogen atoms (0.028 e) is observed nearby the TS at
IRC=0.04 Å. Moreover, based on these sweeps of NBO
charges (Fig. 8f) it can be asserted that, strictly speaking, the
C2H⋯HC2 DHB can be considered as a partially charge-
assisted H-bond in the TS region.

Analysis of the atomic properties of the hydrogen atom
involved in the CH donor group (Table 4) allows us to estab-
lish that the C2+H⋯HC2−DHB at the TSA&A*↔A*&A complete-
ly satisfies all eight “two-molecule” Koch and Popelier’s
criteria for identification of H-bonds [70]. Thus, the charge
of the donor Hd hydrogen atom increases, its dipolar polari-
zation and atomic volume decrease, the energy of the Hd

hydrogen atom increases and the mutual penetration is posi-
tive (i.e., the atomic radius of the bonded atom is shorter) for
both the donor Hd and acceptor Ha hydrogen atoms upon
complexation. Therefore, the C2+H⋯HC2−DHB can be con-
sidered as a true H-bond.

Profiles of the electron density ρ, the Laplacian of the
electron density Δρ, the energy EDHB of the C2H⋯HC2
DHB estimated by the EML formula [72, 73], and the distance
dH⋯H between the hydrogen atoms of the C2H⋯HC2 DHB
along the IRC of the A&A*↔A*&A tautomerization are bell-
shapedwith a slightly asymmetric top (in the case of the ρ,Δρ
and EDHB values) or bottom (in the case of the dH⋯H value)
(Fig. 8a, b, d, e). The electron density ρ reaches its maximum
value 0.0025 a.u. at IRC=−0.53 Å and minimum value
0.0015 a.u. at IRC=−2.92 Å, while the Laplacian of the
electron density Δρ reaches its maximum value 0.0093
a.u. at IRC=−0.11 Å and minimum value 0.0064 a.u. at

a b

Fig. 7 Profiles of a the distance dA⋯B between the electronegative A
and B atoms, and b the distance dAH/HB between the hydrogen and
electronegative A or B atoms of the AH⋯B H-bonds along the IRC of

the A&A*↔A*&A tautomerization via the DPT obtained at the B3LYP/
6-311++G(d,p) level of theory in vacuo
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Fig. 8 Profiles of a the electron density ρ, b the Laplacian of the
electron density Δρ, c the ellipticity ε, d the energy of the C2H⋯HC2
DHB EDHB, estimated by the EML formula [72, 73], at the BCP of the

C2H⋯HC2 DHB, e the distance dH⋯H between the hydrogen atoms,
and f the natural bond orbital (NBO) charges of the donor (Hd) and
acceptor (Ha) hydrogen atoms involved in the C2H⋯HC2 DHB
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IRC=−2.92 Å along the IRC of the DPT tautomerization
(Fig. 8a, b). These results are within the range of values found
in our recent work [93]. Extrapolation of the linear depen-
dence EHB(ρ), shown in Fig. 2 in reference [88], to the value
EHB=0.1 kcal mol−1, corresponding to the minimum value of
the H-bonding energy [90], allows us to obtain the minimum
value of the electron density ρmin=0.0013 a.u., which almost
coincides with our data ρmin=0.0015 a.u. This result is in line
with the results of the study reported in [88], which was
devoted to the investigation of the physico-chemical proper-
ties of CH⋯H DHBs using ab initio QM and QTAIM
methods. Profile of the ellipticity ε of the C2H⋯HC2 DHB
is U-shaped (Fig. 8c). Ellipticity, ε, depends slightly on the
IRC within the range from −2.12 to 2.12 Å and then sharply
increases, varying at this within a wide range from 0.42 to
21.45 (Fig. 8c). This behavior of ε indicates that the
C2H⋯HC2 DHB is dynamically unstable and its energy is
modulated by the low-frequency intermolecular vibrations of
the base pair that tautomerizes [49].

The value of Grunenberg’s compliance constant [74–76] for
the C2+H⋯HC2− DHB at the TSA&A*↔A*&A is equal to 5.203
Å/mdyn, indicating that this interaction is stabilizing [53].

Electron-topological analysis shows that there is specific
interaction between the donor Hd and acceptor Ha hydrogen
atoms in the C2H⋯HC2 DHB (Tables 1, 2). NBO analysis
predicts transfer of charge from σ(C2–H) bonding orbital to
σ*(C2–H) anti-bonding orbital. The second order perturba-
tion energy E(2), characterising the strength of this interac-
tion, is equal to 0.19 kcal mol−1 at the TSA&A*↔A*&A.

We have also fixed for the first time the spectroscopic
manifestations of the С2Н⋯НС2 DHB in the A&A* base pair,
that tautomerizes through the DPT into the A*&A base pair.
Thus, in particular, we have shown that the γ(С2Н) frequency
of the out-of-plane bending vibration of the C2H donor group

increases by 4.5 cm−1 at the TS of the A&A*↔A*&A
tautomerization via the DPT, which is comparable with the
frequency of the corresponding vibration in the A&A* base
pair, while its IR intensity increases in 3.2 times. These
spectral changes are characteristic for the weak H-bonds in-
volving CH group as the proton donor [3, 7, 22, 43, 92, 93].
These findings agree well with the elongation (0.001 Å) of the
length of the CH group (A+) at the TSA&A*↔A*&A (Table 1).

The lifetime of the tautomerized A*&A base pair is equal to
1.82&10−8 s obtained at the MP2/cc-pVQZ//B3LYP/6-311++
G(d,p) level of theory under normal conditions (Table 3). All
six low-frequency intermolecular vibrations (17.4, 24.0, 61.2,
62.1, 104.2 and 105.5 cm−1) are able to develop during this
period of time. The time τ99.9 % necessary to reach 99.9 % of
the equilibrium concentration of the starting A&A* and the final
A*&A base pair is equal to 6.29&10−8 s obtained at the MP2/cc-
pVQZ//B3LYP/6-311++G(d,p) level of theory under normal
conditions (Table 3). This additionally indicates that
the A&A* and A*&A base pairs are dynamically stable struc-
tures [43, 56, 81].

This means that the A&A* or A&A* base pair can be a source
of the A* mutagenic tautomer generation at the DNA replica-
tion under the condition that it forms in the active center of the
DNA polymerase. The lifetime of the A&A* or A&A* base pair
exceeds by 18 times the time required for the replication ma-
chinery to forcibly dissociate a base pair into monomers (10−9 s
[7]) during DNA replication and consequently the A&A* or
A&A* base pair can dissociate successfully into A and A*
monomers.

Conclusions

Combining the QM calculations and QTAIM analysis with
the methodology of the sweeps of the energetic, electron-
topological, geometric and polar parameters, which describe
the course of the tautomerization along the IRC, we showed
for the first time that biologically important planar A*&A
base pair formed by the amino and imino tautomers of the
adenine nucleobase tautomerizes via the asynchronous con-
certed DPT through the zwitterionic TS with Cs symmetry,
which is the A+

&A− zwitterion with the separated charge,
stabilized by the N6+H⋯N6− and N1+H⋯N1− H-bonds and
the C2+H⋯HC2− DHB. It was established that the
A&A*↔A*&A tautomerization process is accompanied by
significant changes in the dipole moment of the base pair
(in its orientation and amplitude), i.e., this transition is
dipole-active.

The nine key points for the A&A*↔A*&A tautomerization
were detected and investigated thoroughly along the IRC of
the tautomerization via the DPT: three key points are sta-
tionary structures, i.e., the initial state (the A&A* reactant;
key point 1), the TS (key point 5) and the final state (the

Fig. 9 Profile of the distance R(H–H) between the glycosidic protons
along the IRC of the A&A*↔A*&A tautomerization via the DPT
obtained at the B3LYP/6-311++G(d,p) level of theory in vacuo
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A*&A product; key point 9), which is equivalent to the reactant;
four key points (key points 2, 4, 6 and 8) correspond to
structures where the Laplacian of the electron density
equals zero at the BCPs of the N6⋯НN6/N6Н⋯N6
(ΔρN6⋯H=0/ΔρH⋯N6=0) and N1⋯HN1/N1H⋯N1
(ΔρN1⋯H=0/ΔρH⋯N1=0) H-bonds, i.e., when the H-
bonds become covalent bonds and vice versa; and two key
points correspond to structures with the loosened N1–H–N1
(key point 3) and N6–H–N6 (key point 7) covalent bridges.
Based on the sweeps of H-bond energies, it was found that
two intermolecular antiparallel N6H⋯N6 (7.06 kcal mol−1)
and N1H⋯N1 (6.88 kcal mol−1) H-bonds are significantly
cooperative and mutually reinforce each other. These key
points can be treated as electron-topological “fingerprints” of
the asynchronous concerted tautomerization process via the
DPT in any H-bonded complex whose starting geometry co-
incides with the final geometry.

Moreover, we established that the A&A*↔A*&A
tautomerization is assisted by the third C2H⋯HC2 DHB in
the IRC range from −2.92 to 2.92 Å. The C2H⋯HC2 DHB
strengthens cooperatively, reaching its maximum energy 0.42
kcal mol−1 at the IRC=−0.52 Å and minimum energy 0.25
kcal mol−1 at the IRC=−2.92 Å, and is accompanied by the
strengthening of the two aforementioned classical H-bonds.
Here, we established that it completely satisfies the electron-
topological, in particular Bader’s [68] and all eight “two-
molecule” Koch and Popelier’s criteria [70] for H-bonding.
The positive value of Grunenberg’s compliance constant
(5.203 Å/mdyn) proves that the C2+H⋯HC2− DHB at
the TSA&A*→A*&A is a stabilizing interaction. NBO analysis
predicts charge transfer from the σ(C2–H) bonding orbital to
the σ*(H–C2) anti-bonding orbital, at this point the stabiliza-
tion energy E(2) is equal to 0.19 kcal mol−1 at the TSA&A*→A*&A.

It was shown that the A&A*/A*&A base pair is a thermody-
namically (ΔGint=−4.32 kcal mol−1) and dynamically stable
structure. Its lifetime (1.82&10−8 s) exceeds by 18 times the
time required for the replication machinery to forcibly disso-
ciate a base pair into monomers (10−9 s [7]) during DNA
replication and, consequently, the A&A* base pair dissociates
successfully into A and A* monomers. This means that the
A&A* base pair can be a source of A* mutagenic tautomer
generation at the DNA replication on condition that it forms in
the active center of the DNA polymerase.
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